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Abstract

Geometric approaches for filling-in surface holes are introduced and studied in this

paper. The basic idea is to represent the surface of interest in implicit form, and

fill-in the holes with a scalar, or systems of, geometric partial differential equations,

often derived from optimization principles. These equations include a system for

the joint interpolation of scalar and vector fields, a Laplacian-based minimization, a

mean curvature diffusion flow, and an absolutely minimizing Lipschitz extension. The

theoretical and computational framework, as well as examples with synthetic and real

data, are presented in this paper.

Keywords: Inpainting, variational formulations, interpolation, surface holes, scalar and

vector fields, Laplacian, mean curvature, absolute minimizing Lipschitz extension.
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1 Introduction

Inpainting is a term used in art to denote the modification of images (painting, pho-

tographs, etc) in a form that can not be detected by an ordinary observer. It normally

refers to the filling-in of regions of missing information or the replacement of regions by

a different kind of information. This is a very important topic in image processing, with

applications including image coding and wireless image transmission (e.g., recovering lost

blocks), special effects (e.g., removal of objects), and image restoration (e.g., scratch re-

moval). The basic idea behind the computer algorithms that have been proposed in the

literature is to fill-in these regions with available information from their surroundings.

This information can be automatically detected as in [12, 25], or hinted by the user as in

more classical texture filling techniques [22, 26, 38]. Several names have been used for this

filling-in operation, including disocclusion in [8, 32], or inpainting in [11, 12, 13]. In the

context of this paper, and following [12], we shall refer to it as digital inpainting.

It turns out that images are not the only kind of data where there is a need for digital

inpainting. Surfaces obtained from range scanners often have holes, regions where the 3D

model is incomplete. The main cause of holes are occlusions, but these can also be due to

low reflectance, constraints in the scanner placement, or simply lack of sufficient coverage

of the object by the scanner. This is frequently observed in the scanning of art pieces [31],

and is in part due to the fact that complicated geometry has a lot of self-occlusions and

details. Art pieces also impose significant restrictions on the scanner placement. Holes are

also observed in common scenarios where LADAR data is collected (e.g., a house behind

an occluding tree), and in all the major areas where range scanners are used. With the

increasing popularity of range scanners as 3D shape acquisition devices, with applications

in geoscience, art (e.g., archival), medicine (e.g., prohestetics), manufacturing (from cars
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to clothes), and defense (e.g., LADAR), it is very important to be able to inpaint this

missing information. This is often needed for post-processing as well as for presentation.

It is the goal of this paper to present a framework for inpainting these surface holes.

Our work is inspired by the one reported in [21], and it is presented as an alternative to

this method. This pioneering work addressed the problem of hole filling via isotropic diffu-

sion of volumetric data (that is, iterative Gaussian convolution of some distance function

to the known data). The approach proposed by these authors addresses holes with com-

plicated topology, a task very difficult with mesh representations. The reader is directed

to this paper for an excellent and detailed description of the nature of holes in scanning

statues and for a literature review in the subject. We should only note that most algo-

rithms on reconstructing surfaces from range data are point-cloud reconstruction based

and treat holes as regions with low sampling density, thereby interpolating across them

[2, 6, 10, 18, 24, 27]. Of course, these algorithms often do not distinguish between a real

hole in the data and one due to the lack of sampling, and equally fill or fail to fill both

cases in the same fashion. Other point-cloud methods evolve a surface over time until it

approximates the data [17, 42, 44], or fit a set of 3D radial basis functions to the data,

compute a weighted sum of them and use a level set of this last function as reconstructed

surface [23, 14]. Mesh based methods for surface reconstruction [39, 20, 41] can perform

hole filling as a post-process or integrate hole filling into surface reconstruction [20]. One

of our proposed models is closely related to the one presented in [19] (and of course to

our previously introduced 3D surface inpainting model [40]), where the authors use the

Willmore flow with a finite element implementation. In contrast with their work, our

model works on implicit surfaces, thereby allowing for more complicated hole topologies,

and also naturally leads to systems of low order differential equations.
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The first algorithm here proposed is an extension of our previous work on image in-

painting [7, 8, 12] (see also [11, 13, 16, 32, 34, 37]). In particular, we show how to adapt

the variational formulation we presented in [7, 8] to the problem of surface hole filling. As

in [21], the use of volumetric data (that is, the surface is represented as the zero level-set

of a function) brings us topological freedom. In contrast with [21], we use a system of

coupled anisotropic (geometric) partial differential equations designed to smoothly con-

tinue the isophotes of the embedding function, and therefore the surface of interest (as

the zero level isophote). These equations are based on the geometric characteristics of

the known surface (e.g., the curvatures), and as [21], are applied only at the holes and a

neighborhood of them (being these equation anisotropic and geometry based, they lead

to a slightly slower algorithm than the one reported in [21], as expected with geometric

flows). A preliminary version of this (first) model was presented in [40]. We formalize

this and improve it here with an automatic initialization method. This initialization is

based on the computation of a conical neighborhood F of the known part of the surface,

call it S, where the distance function is uniquely attained. Thereby we can define the

signed distance function ds and then ∇ds is the extension of the unit normal to S to a

neighborhood of it. This construction also helps us to label both parts of the surface as

interior and exterior, and this is useful in this first method.

We also develop additional curvature based hole surface inpainting methods. The

first of them is based on a variational model which integrates the Laplacian of a distance

function (i.e., a function which satisfies |∇D| = 1, and D = ds in the conical neighborhood

F), in a open set containing the hole. Recall that the Laplacian of the distance function

gives the mean curvature of its level sets. The second method is more heuristic and is

based on the diffusion of a function which represents mean curvature of level sets of an
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underlying implicit function.

Finally, we also present simpler methods based on the Laplace equation and the so-

called AMLE model, which permit to reconstruct a function which is distance-like near the

known part of the surface and whose zero level set can be interpreted as the reconstructed

surface. If our interest is just to find a smooth reconstruction, this approach may be

sufficient. If one wants a reconstruction which is based on minimizing mean curvature, it

can serve as an initialization.

These algorithms, except the one based on curvature diffusion which is less reliable,

exhibit a similar behavior in reconstructing surface holes for synthetic and real data. As

mentioned above, the reconstructions based on the Laplace or AMLE equation can be used

as initializations for the curvature based approaches. Describing and studying all these

techniques provides a comprehensive understanding of the different possible frameworks

for filling-in surface holes.

The remainder of this paper is organized as follows. Section 2 describes our variational

approach for image inpainting in any dimension N and its adaptation to the reconstruction

of surface holes. In Section 3 we present the two additional curvature based approaches:

a variational one minimizing the integral of the absolute value (or a power of it) of the

mean curvature, and an heuristic one, based on the diffusion of curvature. Section 4

describes two simple methods for surface reconstruction based on Laplace equation and

the so-called AMLE model. Section 5 describes the numerical algorithms used in our

computations. In Section 6 we present some numerical experiments on hole filling obtained

with the algorithms previously introduced. Finally, in Section 7, we summarize the main

conclusions of the paper.
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2 Joint interpolation of vector fields and gray levels and its

application to surface inpainting

Let us describe the variational approach to filling-in by joint interpolation of vector fields

and gray values which was introduced in [7, 8]. Our purpose is to adapt it to the problem

of hole filling on surfaces.

Let Q be a hyper-rectangle in IRN and Ω an open bounded subset of Q with smooth

boundary. Suppose that we are given an image u0 : Q \ Ω → IR, where Ω denotes the

closure of Ω. Using the information of u0 on Q \ Ω we want to reconstruct the image u0

inside the hole of missing information Ω. In our context, the function u0 is an implicit

representation of the known data. In [7, 8] we proposed to fill-in the hole Ω (on images)

using both the gray level u and the vector field of normals θ to the level sets of the image

outside the hole. This permitted to design energy functionals which minimize a power of

(mean) curvature and to write them in terms of the pair of variables (u, θ). This is the

approach that we shall explore next with the purpose of interpolating holes in surfaces.

We denote by Lp(Q), 1 ≤ p < ∞, the space of (measurable) functions f : Q → IR such

that
∫
Q |f(x)|p dx < ∞. By L∞(Q) we denote the space of bounded functions f : Q → IR.

Let Ω̃ be an open subset of Q with smooth boundary such that Ω ⊂⊂ Ω̃. The band

around Ω, used to fill it in, is the set B = Ω̃ \ Ω. To fill-in the hole Ω we use the

information of u0 contained in B, mainly the gray level u0 and the vector field of normals

(i.e., the gradient directions) to the level sets of u0 in B, which we denote by θ0. We

assume that θ0 is a vector field with values in IRN satisfying θ0(x) · ∇u0(x) = |∇u0(x)|

and |θ0(x)| ≤ 1. Intuitively, this amounts to say that θ0(x) = ∇u0(x)
|∇u0(x)| when ∇u0(x) 6= 0,

and we give freedom to θ0(x) when ∇u0(x) = 0 requiring only that |θ0(x)| ≤ 1. The basic
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goal then is to extend in a smooth way the pair (u0, θ0) from the band B = Ω̃ \ Ω to a

pair of functions (u, θ) inside Ω. For that we attempt to continue the isosurfaces of u0

(i.e., the hypersurfaces [u0 = λ] := {x : u0(x) = λ} or, more generally, the boundaries of

the level sets [u0 ≥ λ], λ ∈ IR) in B inside Ω by taking into account the principle of good

(interpreted here as smooth) continuation. The energy functional proposed in [7, 8] was

based on the following principles:

a) We constrain the solution (u, θ) to coincide with the data on the band B. For that we

ask that u = u0 on B. The vector field θ should also satisfy |θ| ≤ 1 on Ω and should be

related to u by θ · ∇u = |∇u|, i.e., we impose that θ is the vector field of directions of the

gradient of u. This implies that θ(x) = θ0(x) on the points x ∈ B where ∇u0(x) 6= 0 and

we leave freedom to θ(x) on the points where x ∈ B where ∇u0(x) = 0 besides satisfying

that |θ(x)| ≤ 1.

b) We impose that the vector field θ0 in the band B is smoothly continued by θ inside Ω.

Note that if θ are the directions of the normals to the level hypersurfaces of u, then div(θ)

(a possible measure of smoothness of the vector field) is the mean curvature. The smooth

continuation of the levels sets of u0 inside Ω is imposed by requiring that div θ ∈ Lp(Ω̃),

i.e.,
∫
Ω̃
|div θ|p dx < ∞. For consistency we shall require that θ0 is such that div θ0 ∈ Lp(B)

and assume that (u0, θ0) may be extended to a a pair of functions (u, θ) in the class of

functions where we minimize our energy (see (1)).

Based on these basic principles, we proposed in [7, 8] to interpolate the pair (θ, u) in
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Ω by minimizing the functional

Minimize
∫
Ω̃
|div(θ)|p(γ + β|∇k ∗ u|)dx

|θ| ≤ 1, ‖ u ‖∞≤ M,

|∇u| − θ · ∇u = 0 in Ω̃,

u = u0 in B, θ · νΩ̃ = θ0 · νΩ̃ in ∂Ω̃,

(1)

where p > 1, γ > 0, β ≥ 0, k denotes a regularizing kernel of class C1 such that k(x) > 0

a.e., and M = ‖u0‖L∞(B) := supx∈B |u0(x)|. As usual, νΩ̃ denotes the outer unit normal

to ∂Ω̃. Let us note that if u is the characteristic function of a set A ⊆ IR3 (i.e., u(x) =

χA(x) = 1 if x ∈ A and = 0 otherwise) with smooth boundary and θ is a smooth extension

of the unit normal to ∂A, then
∫
Ω̃
|div(θ)|p|∇u|dx =

∫
∂A |H|p dS, where H(x) is the mean

curvature of ∂A and dS denotes the surface area. The convolution of ∇u with the kernel

k is done for technical reasons, it permits to prove the existence of a minimum for (1)

[7, 8], though we can dismiss it in practice. Finally, let us also note that the constant γ

has to be > 0, it implies an Lp bound on div θ, and this is useful to prove that the limits

of minimizing sequences satisfy the constraint |∇u|− θ ·∇u = 0 in Ω̃ [7, 8]. We refer to [8]

for a detailed theoretical analysis of this formulation and its approximation by smoother

functionals. Let us finally note that the use of smooth continuation principles based on

powers of mean curvature as smoothness measure was proposed in [33] with the purpose of

image segmentation with depth (reconstructing then the occluded boundaries), and used

as a base for variational approaches of image disocclusion in [7, 8, 32].

9



2.1 Surface inpainting

Let us now describe how to adapt the above formulation to inpaint (fill-in) holes (or gaps)

on surfaces S, which we assume to be embedded in IR3. To avoid any confusion with our

previous use of the word hole, let us use the word gap of the surface. Assume, to fix ideas,

that S is a smooth compact connected surface, and M is a part of S which is unknown or

could not be obtained during scanning (or is damaged and needs to be replaced). Let us

identify S with its known part. Let us choose a bounding box Q in IR3 strictly containing

the surface gap M and part of S (see, for instance, Figure 8). Let ∂M be the boundary

of the gap. Even if M is unknown, its relative boundary in S is known. Let F be a

neighborhood of S ∩Q such that

F = {x ∈ Q : d(x,S ∩Q) < αd(x, ∂M)}, 0 < α < 1.

We assume that F \(S∩Q) consists of two connected components, which can be identified

as the two sides of the surface S (see Figure 1). The information derived from the region

F is considered reliable and we impose it as a constraint in our reconstruction. Let dF (x)

be the distance of a point x ∈ F to S ∩Q. By changing the sign of dF in one of the sides

of the surface we may define the signed distance function to S ∩Q in F (take it positive

inside and negative outside). We denote it by dFs (x), or simply, by ds. The vector field in

F ,

N(x) = ∇ds(x),

is an extension of the unit normal vector field on S ∩Q to its neighborhood F . Again, we

consider this information as reliable and it will be used as a constraint.

To adapt functional (1) to surface hole reconstruction we must make explicit the hole
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(a) (b)

Figure 1: a) Section of the surface S with the hole M and the neighborhood F . b) Sign

assignment to the two faces of S. The hole Ω is defined as the ball minus F . The band B

is defined as Q \ Ω.

Ω and the functions (u0, θ0) which are the known data on a neighborhood of Ω. To define

the hole we take a ball G (or any open set homeomorphic to a ball) such that G ⊂⊂ Q and

containing the boundary of the gap ∂M in its interior. We define the hole Ω by removing

from G the points of F . We take the band B = Q \ Ω (notice that Q is identified to the

set Ω̃ of Section 2).

Figure 2: If the ball is not large enough, we may have difficulties in the assignment of

labels. Notice that if we extend the ball, the labelling can be done in a consistent way.
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We then consider u0 : Q \ Ω → IR a characteristic function, that is, a binary function

taking values 0 and 1. The values u0(x) = 1 and u0(x) = 0 represent the points which are

interior, respectively, exterior, to S. Recall that we are assuming that F \ (S ∩Q) consists

of two connected components which represent the two sides of the surfaces. We then label

these two sides with the values u0 = 1, representing the inner part of the surface, and

u0 = 0, representing its outer side. The set [u0 = 1]∩F (respectively, the set [u0 = 0]∩F)

is represented in Figure 1.b with the sign + (resp., the sign -). By propagation, we extend

this labelling to the rest of Q \ Ω, knowing it already in F . For simplicity, we assume

that, by eventually extending the ball, this labelling can be done in a consistent way: we

assume that G can be chosen so that ∂G is divided into two labelled regions consistent

with the labels in F \ (S ∩ Q) (see figures 1.b and 2). We call A the set of points x in

Q \Ω such that u0(x) = 1, hence u0(x) = χA(x). In this case, by minimizing (1), we want

to reconstruct the set A inside the hole Ω knowing the set outside Ω.

Recall that we minimize (1) by solving the gradient descent equations (9), (10) pre-

sented below, using the numerical approach described in Section 5.1, and we need the

initial conditions for u and θ in Q = Ω ∪ B, so that θ · ∇u = |∇u|. For that, we define

uinit in Q = Ω∪B as the extension of u0 inside Ω by a geodesic propagation, so that uinit

takes values 0 and 1. Then we define Ds as the signed distance to ∂[uinit = 0] (negative

in [uinit = 0] and positive in [uinit = 1]) so that, by construction, Ds is an extension of ds

(recall that ds is defined in F). We take the vector field θinit = ∇Ds in Q = Ω∪B and we

define θ0 = θinit in B. Observe that ∇u0 = νδS∩Q, where ν denotes the inner unit normal

to S and δS∩Q is the Hausdorff measure on S ∩Q. We have θinit · ∇uinit = |∇uinit|.
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3 Alternative curvature based approaches

Following the description in the introduction, we now present alternative filling-in ap-

proaches for the problem of filling holes in three dimensions.

3.1 Energy in terms of distance functions

Recall that if S ′ is a smooth manifold of class C2, then the signed distance function D to

S ′ is also of class C2 in a neighborhood of S ′. The vector field ∇D is an extension of the

unit normal to S ′ and satisfies |∇D| = 1. The operator ∆D(x) = div∇D(x) represents the

sum of the principal curvatures of the isosurface [D = D(x)] := {y ∈ Q : D(y) = D(x)}.

When we look at this as a function in IR3, the distance function is Lipschitz and it satisfies

|∇D| = 1 in the viscosity sense. The isosurfaces may develop singularities and the only

thing we can expect is that the mean curvature is a Radon measure. Indeed, recall that

the mean curvature of a polyhedral surface is a Dirac’s measure concentrated at the edges,

and the signed distance function may have such type of singularities. We shall assume that

the signed distance D to the surface S is such that ∆D ∈ M(Q) where M(Q) denotes

the space of Radon measures in Q [1]. We define

W (Q) = {u ∈ L1(Q) : ∇u ∈ L1(Q), ∆u ∈M(Q)}.

We propose to fill-in the three dimensional holes via the minimization of the functional

Min{D ∈ W (Q), |∇D| = 1, D = ds in F
} ∫

Q
|∆D(x)| dx. (2)

This energy integrates the mean curvature on the isosurfaces of D. Due to the singularities

of the isosurfaces of D, the integral of a power of the mean curvature with an exponent
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p > 1 may be infinite. Let us observe that problem (2) has a minimizer as soon as

the admissible set is nonempty, and we assume that this is the case. Details on the

implementation of the proposed approach are presented in Section 5.2.

3.2 Curvature diffusion and distance reconstruction

We also present studies based on diffusion of the mean curvature (see also [43] for related

work based on the linear Poisson equation). For convenience, let us write QF := Q \ F .

We propose to diffuse the mean curvature of S and then reconstruct the surface with the

prescribed curvature, that is, we propose to solve the system of PDEs

ωt = ∆ω in [0,∞)× (Q \ F)

ut = |∇u|
(
div

(
∇u
|∇u|

)
− ω

)
in [0,∞)× (Q \ F)

(3)

with the following boundary conditions on ∂F ∩Q:

ω = ∆ds on ∂F ∩Q,

∇u · ν = ∇ds · ν on ∂F ∩Q,

(4)

where ds denotes the signed distance to S and ν denotes the outer unit normal to ∂F .

Observe that we did not write the Dirichlet boundary condition u = ds because it is not

possible, in general, to impose it in a classical sense to the equation for u (mean curvature

type equation). Let us comment on the boundary conditions used on ∂QF \ ∂F . First of

all, we observe that the ideal scenario would be to consider Q = IRN and solve the system

of PDEs (3) in [0,∞)× (IRN \F) with the boundary conditions (4), but this is impossible
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at the numerical level. For that we modify the boundary conditions on ∂QF \ ∂F , we do

linear extrapolation of u and ω along the normal to the level sets of u. Details on the

implementation of the proposed flow are presented in Section 5.2.

4 The Laplace and the Absolute Minimizing Lipschitz ex-

tension interpolation

In [15] we studied and classified interpolation algorithms which satisfy a reasonable series of

axioms in terms of the solution of a partial differential equation. Two particular examples

are the Absolutely Minimizing Lipschitz Extension, denoted as AMLE in the sequel, and

the Laplacian interpolation. We now discuss the applicability of AMLE and the Laplace

equation to the problem of filling-in surface holes.

The Laplacian interpolation is based on solving the PDE

−∆u = 0 in QF , (5)

with specified boundary data on ∂QF . Indeed, boundary data is only known in ∂F ∩Q,

where we should impose that u = ds. Thus, a reasonable assumption would be to consider

∂u

∂ν
= 0 in ∂QF \ ∂F (6)

where ν denotes the outer unit normal to ∂QF \ ∂F . In some sense, from the theoretical

point of view, the lack of knowledge of boundary conditions for u in ∂QF \ ∂F is an

obstacle to the possibility of using (5) to reconstruct the surface S ∩Q (which is defined

as ∂[u > 0]). In spite of this, we can solve (5) with the boundary condition (6), or use,
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instead of (6), a linear extrapolation of u along its gradient direction on ∂QF \ F . The

results obtained with this last boundary condition are presented in Section 6. We should

of course mention that this approach is closely related to the work in [21], based on linear

diffusion.

The AMLE interpolation ([4, 5]) is based on solving the PDE

〈D2u (∇u) ,∇u〉 = 0 in QF . (7)

with boundary data on ∂QF (here∇u and D2u denote the gradient and the Hessian matrix

of u, respectively, so that in Cartesian coordinates, 〈D2u (∇u) ,∇u〉 =
∑3

i,j=1
∂2u

∂xi∂xj

∂u
∂xi

∂u
∂xj

).

As a short review on (7), let us recall that this equation can be solved on general domains

and boundary data, in particular the data can be given in a finite number of surfaces,

curves and/or points. Indeed, we may assume that the boundary data ϕ ∈ Lip∂(QF )

where

Lip∂(QF ) =

{
g ∈ C(∂QF ) : |||g||| = sup

x,y∈∂QF

|g(x)− g(y)|
d∂Q(x, y)

< ∞
}

,

and dQF (x, y) is the geodesic distance between x and y in QF , i.e., the minimal length of

all possible paths joining x and y and contained in QF [29].

Let us recall that, if X is an open set or a smooth manifold in IRN , W 1,∞(X) (resp.

W 1,p(X)) denotes the space of functions u ∈ L∞(X) (resp. u ∈ Lp(X)) such that ∇u ∈

L∞(X) (resp. ∇u ∈ Lp(X)). By W 1,∞
0 (X) (resp. W 1,p

0 (X)), we denote the closure in

W 1,∞(X) (resp. in W 1,p(X)), of the smooth functions with compact support in X.

Existence and uniqueness of viscosity solutions for the AMLE model (7) with boundary

data ϕ ∈ Lip∂(QF ) was proved by Jensen [29]. Moreover, he proved that the viscosity

solution of (7) is an absolutely minimizing Lipschitz extension of ϕ, i.e., u ∈ W 1,∞(QF )∩
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C(QF ) and satisfies

‖∇u‖L∞(Q′;RN ) ≤ ‖∇w‖L∞(Q′;RN ) (8)

for all Q′ ⊆ QF and w such that u − w ∈ W 1,∞
0 (Q′). Let us add that the AMLE model

was introduced by Aronsson in [4, 5] as the Euler-Lagrange equation of the variational

problem (8) (which can be interpreted as the limit as p →∞ of the variational problems

‖∇u‖Lp(Q′;RN ) ≤ ‖∇w‖Lp(Q′;RN ) for all Q′ ⊆ QF and w such that u − w ∈ W 1,p
0 (Q′)

[9, 29]). The above results were extended in [29] to the case of continuous boundary

data ϕ ∈ C(∂QF ), and Jensen proved that in that case, the AMLE is locally Lipschitz

continuous in QF [29].

Concerning boundary conditions, the same remarks we made for the Laplace equation

(5) can be done here, that is, boundary data are only known in ∂F ∩Q where we should

impose that u = ds (by the results in [30], there exist absolutely minimizing Lipschitz

extensions of ds|∂F∩Q which satisfy (7), but there is no uniqueness result for them). From

the theoretical point of view, the lack of knowledge of boundary conditions on ∂QF \∂F is

an obstacle to the possibility of using (7) to reconstruct the surface S∩Q (which is defined

as ∂[u > 0]). To overcome this difficulty, we propose to use either Neumann boundary

conditions (6), or to use linear extrapolation of the values of u along the direction ∇u on

∂QF \ ∂F . The experiments displayed in Section 6 were obtained with the last method.

Details on the implementation of both Laplacian and AMLE interpolation methods are

presented in Section 5.3.
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5 Numerical considerations

We now present some basic concepts related to the numerical implementation of the differ-

ent filling-in models described above. For later use let us define the backward and forward

derivative operators by:

δ+
x1

u(i, j, k) = u(i + 1, j, k)− u(i, j, k) δ−x1
u(i, j, k) = u(i, j, k)− u(i− 1, j, k)

δ+
x2

u(i, j, k) = u(i, j + 1, k)− u(i, j, k) δ−x2
u(i, j, k) = u(i, j, k)− u(i, j − 1, k)

δ+
x3

u(i, j, k) = u(i, j, k + 1)− u(i, j, k) δ−x3
u(i, j, k) = u(i, j, k)− u(i, j, k − 1)

where indexes (i, j, k) denote the voxel location. We use the superscript c to denote

centered differences in space derivatives, and we define ∇cu = (δc
x1

u, δc
x2

u, δc
x3

u) where

δc
x1

u(i, j, k) = 1
2 (u(i + 1, j, k)− u(i− 1, j, k)), with analogous expressions for δc

x2
u(i, j, k),

δc
x3

u(i, j, k).

5.1 Joint interpolation of vector fields and gray levels

To minimize the functional (1) we use the steepest descent method. If we denote the

energy by Ẽ(θ, u), the steepest descent equations are

θt = −∇θẼ(θ, u) (9)

and

ut = −∇uẼ(θ, u) (10)

in (0,∞)× Ω̃, supplemented with the corresponding boundary data and initial conditions.

The constraints on (θ, u) can be incorporated either by penalization or by projecting onto
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them after each time step. We tested both methods in an implicit (also in an explicit)

in time discretization of (9), (10). Let us explain in some detail the implicit in time

implementation of (9), (10) with the constraint θ ·∇u = |∇u| incorporated by penalization.

The constraint u = u0 in B is also incorporated by penalization. Thus we consider

Ẽ(u, θ) =
∫
Ω̃
|div(θ)|p(γ + β|∇k ∗ u|)dx + η

∫
Ω̃
(|∇u| − θ · ∇u) + λ

∫
B
(u− u0)2dx (11)

which corresponds to the energy (1) plus two penalization terms for the constraints

θ · ∇u = |∇u|, and u = u0 on B, with η, λ > 0. At the discrete level, the integral

is replaced by a sum, the gradients are discretized with forward derivatives and the di-

vergence with backward derivatives (or conversely, gradients with backward derivatives,

while divergences with forward ones). We follow this structure since at the continuous

level the divergence is the dual operator of the gradient, while at the discrete level the

divergence discretized with backward (resp., forward) derivatives is the dual of the gradi-

ent with forward (resp., backward) derivatives. Thus, we use as discrete approximations:

∇u = (δ+
x1

u, δ+
x2

u, δ+
x3

u), and similarly for ∇k∗u, while div θ =
∑3

i=1 δ−xi
θi if θ = (θ1, θ2, θ3).

To simplify our notation, let us write g(θ) := β|div(θ)|p, h(u) := γ + β|∇k ∗ u|. Then

∇θẼ(θ, u) = −p∇[h(u)|div(θ)|p−2div(θ)]− η∇u = 0 (12)

and

∇uẼ(θ, u) = −div
(

k ∗
(

g(θ)
∇k ∗ u
|∇k ∗ u|

))
−η div

( ∇u
|∇u|

)
+η div θ+2λ(u−u0)χB = 0, (13)
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both equations holding in Ω̃. As we mentioned above, the gradients are discretized with

forward derivatives, while backward ones are used to discretize the divergences. To solve

equations (9) and (10), we use an implicit discretization in time. To be precise, we write

∇θẼ(θ, θ′, u, v) = −p∇[h(u)(ε + |div(θ′)|p−2)div(θ)]− η∇u, (14)

and

∇uẼ(θ, θ′, u, v) = −div

(
k ∗

(
g(θ)

∇k ∗ u√
ε + |∇k ∗ v|2

))
− η div

(
∇u√

ε + |∇v|2

)

+η div(θ) + 2λ(u− u0)χB.

(15)

Then, we use the discretization in time given by

θn+1 − θn = −∆t∇θẼ(θn+1, θn, un, un), (16)

and

un+1 − un = −∆t∇uẼ(θn+1, θn+1, un+1, un). (17)

Finally, we make the change of variables ξn+1 := θn+1 − θn, vn+1 := un+1 − un and we

have

ξn+1 = −∆t∇θẼ(ξn+1 + θn, θn, un, un), (18)

vn+1 = −∆t∇uẼ(θn+1, θn+1, vn+1 + un, un). (19)

In practice we solve (18) in Ω̃ with the boundary condition

θn+1 · νΩ̃ = θ0 · νΩ̃ on ∂Ω̃,
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Now, since θn+1 · νΩ̃|
∂Ω̃

= θn · νΩ̃|
∂Ω̃

, we may write this boundary condition as

ξn+1 · νΩ̃ = 0 on ∂Ω̃.

The boundary condition for (19) is (see [8])

k ∗
(
g(θn+1)

∇k ∗ un+1√
ε + |∇k ∗ un|2

)
· νΩ̃ + η

(
∇un+1√

ε + |∇un|2

)
· νΩ̃ = ηθ0 · νΩ̃ on ∂Ω̃.

which is written in terms of vn+1 = un+1 − un as

Bk(θn+1, vn+1, un) = ηθ0 · νΩ̃ −Bk(θn+1, un, un),

where Bk(θn+1, u, un) = k ∗
(
g(θn+1) ∇k∗u√

ε+|∇k∗un|2

)
· νΩ̃ + η

(
∇u√

ε+|∇un|2

)
· νΩ̃. Then we use

a conjugate gradient method to solve (18) and (19). The constraint |θ| ≤ 1 is incorporated

by renormalizing θn (when |θn| > 1) after each time step. The constraints on ‖u‖∞ can

be also introduced after each time step. In spite of the penalization term, the relationship

θ ·∇u = |∇u| is (numerically) lost and we reinforce it after a certain number of time steps.

We can also set η = 0 and incorporate the constraint that |∇u| = θ · ∇u by projecting

onto it after each time step. We also tested this both in a time implicit and explicit

discretization of equations (9) and (10). After each time step of θ and u we redefine

θ(i, j, l) =
θ(i, j, l) + α∇u(i, j, l)

max(1, |θ(i, j, l) + α∇u(i, j, l)|)

for some α > 0. As it has been shown in [28] this is a good way of imposing that |θ| ≤ 1

and θ · ∇u = |∇u|. We have found quite similar results using both described methods for

imposing the constraint.
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In our experiments, we take k a Gaussian kernel with small variance, say one or two

pixels. In practice, one can also dismiss the kernel k. The initial conditions for u and θ

are taken as we explained at the end of Section 2.1 so that θ · ∇u = |∇u| in Q := Ω ∪B.

We could also construct an initialization (u, θ) using the solution Laplace equation, or

AMLE (see Section 4). As regards the parameters in functional (11), in our experiments

we choose: β = 1, λ = 100, γ = 1 and η = 10 (although we have experimented with

γ = 0, γ = 0.5 and η = 1 and the results are always good). The parameter ε in equations

(14) and (15) is set to 0.1.

Finally, let us observe that, since both constraints u = u0 in B and θ · ∇u = |∇u| in

Ω̃ have been imposed by penalization, this gives some robustness to noise, but this can be

also achieved with a previous smoothing of the surface near the hole.

5.2 Curvature-base approaches

We use the steepest descent method also to minimize the functional (2), and we solve

Dt = −∆
(

∆D

|∆D|

)
(20)

In order to satisfy the constraint |∇D| = 1 we make use of the PDE that computes the

signed distance function [35]:

Dt = −sign(D)(|∇D| − 1) (21)
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Then, as a numerical approach to minimize (2) we combine (20) and (21) at each time

step. To go from Dn to Dn+1 we first solve

D∗ = Dn −∆t∆
(

∆Dn

|∆Dn|+ ε

)

using the standard discretization for the Laplacian (∆w =
∑3

i=1 δ+
xi

δ−xi
w for any function

w) and then solve

Dn+1 = D∗ −∆tsign(D∗)(|∇D∗| − 1)

using an upwind scheme for the gradient magnitude [35, 36]. The precise numerical scheme

is:

Dn+1 = D∗ −∆t
[
max(sign(D∗), 0)(|∇+D∗| − 1) + min(sign(D∗), 0)(|∇−D∗| − 1)

]

where

|∇+D∗| =
[

3∑
i=1

max(δ−xi
D∗, 0)2 + min(δ+

xi
D∗, 0)2

]1/2

, (22)

|∇−D∗| =
[

3∑
i=1

max(δ+
xi

D∗, 0)2 + min(δ−xi
D∗, 0)2

]1/2

. (23)

As boundary conditions, we use Dn = D∗ = ds on ∂F ∩Q and linear extrapolation of Dn

and D∗ along its gradient direction on ∂QF \ ∂F .

Even if not fully theoretically justified, unless we work in a small neighborhood of the

surface D = 0, a similar scheme may be used to minimize the functional

Min{
D: |∇D| = 1, ∆D ∈ L2(Q), D = ds in F

} ∫
Q
|∆D(x)|2 dx. (24)

In order to solve the system (3), we solve first the equation ωt = ∆ω using an explicit

23



Euler scheme and the standard discretization for the Laplacian. Then, we reconstruct the

distance function by solving ut = |∇u|
(
div

(
∇u
|∇u|

)
− ω

)
. For that, we use the following

explicit scheme ([36]):

un+1 = un −∆t
[
|∇+un|max(ω − div−∇+

n un, 0) + |∇−un|min(ω − div−∇+
n un, 0)

]

where

div−∇+
n un = (δ−x1

, δ−x2
, δ−x3

) ·

 (δ+
x1

un, δ+
x2

un, δ+
x3

un)√
ε2 + |(δ+

x1u, δ+
x2u, δ+

x3u)|2

 ,

where ε > 0 is a small parameter, and |∇+un|, |∇−un| are given as in (22), (23).

5.3 The Laplace equation and the AMLE

The Laplace equation (5) is solved by computing the steady state of equation ut = ∆u.

This PDE is discretized with an implicit (or explicit) Euler scheme in time and the standard

discretization for the Laplacian. In case of the implicit Euler scheme, the corresponding

linear system is solved using the conjugate gradient method. As boundary conditions we

use u = ds on ∂F∩Q and linear extrapolation of u along its gradient direction on ∂QF \∂F

(one can also use the Neumann boundary conditions (6)). The same boundary conditions

are used for the AMLE equation whose numerical scheme we describe now.

The AMLE equation (7) is also solved computing the steady state of its associated

evolution problem. Following [15], we use a nonlinear overrelaxation method (with an

implicit Euler scheme in time and centered differences for space derivatives). Thus, we

compute un+1 at (i, j, k) by:

un+1 = un − w
(1 + 2∆t)|∇cu∗|2u∗ − un|∇cu∗|2 −∆t

∑3
i,j=1 ū∗xixj

δc
xi

u∗δc
xj

u∗

(1 + 2∆t)|∇cu∗|2 + ε
(25)
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where the relaxation parameter is 0 < w < 2 (we use, in practice, w = 1.5).

When solving (25), voxels are visited in a lexicographic order. Let us denote by �

the lexicographic order for indexes in Z3. Now, when computing the value of un+1(i, j, k)

we use u∗, defined below, which is a function that takes the same values as un or un+1

depending at the pixel location (p, q, r) where we evaluate it:

u∗(p, q, r) =


un(p, q, r) if (i, j, k) � (p, q, r),

un+1(p, q, r) otherwise,
(26)

Finally, we define ū∗xixj
as

ū∗xixj
:=


δ−xi

δ+
xi

u∗ − 2u∗ if i = j,

δc
xi

δc
xj

u∗ otherwise.

This iterative scheme (25) gives the solution of (7).

6 Experimental results

We now show experimental results illustrating the filling-in techniques here proposed.

6.1 Simple geometric objects

First, we present experiments of geometric objects done with the different methods dis-

cussed above: the joint interpolation of vector fields and gray levels (abbreviated JIVFGL),

minimization of the absolute value of the Laplacian of the distance function (and also the

case of power 2), curvature diffusion, the AMLE, and Laplace equations. The images in

our experiments have been rendered using the AMIRA Visualization and Modeling System

[3].
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Figure 3 shows a pyramid with a hole and its corresponding reconstructions; the basis

of the pyramid is a square whose sides have length 61 voxels, the height is of 30 voxels and

the hole is parallel to the basis going from voxels of height 8 to voxels of heigth 12, both

included. Figure 3(a) displays an ideal pyramid from which we cut a piece, the pyramid

with the hole is displayed in Figure 3(b). Notice that the boundary of the hole looks

rounded, this is only due to our display and does not correspond to the data. Figure 3(c)

shows its reconstruction by joint interpolation of vector fields and gray levels (JIVFGL),

i.e., functional (1) with N = 3. Figure 3(d) shows the result obtained minimizing the

absolute value of the Laplacian of the distance function, i.e., (2). Figure 3(e) shows the

result obtained minimizing the square of the Laplacian of the distance function, i.e., (24).

Figure 3(f) shows the result obtained with curvature diffusion (3). Finally, Figures 3(g)

and 3(h) display the results obtained solving the AMLE and Laplace equations in 3D,

respectively. Note how the reconstructions obtained with the model JIVFGL and the

square of the Laplacian for example manage to fill-in a relatively large hole. The others

do a decent work that can certainly be used as a very good initial condition for the best

models to refine. For a better display of the results we show in Figure 4 an orthoslice of

each of the reconstructions, corresponding to a plane parallel to the basis on the middle

of the hole (voxels located at heigth 10).

Figure 5 displays a torus with a hole and its corresponding reconstructions; the torus

is generated by the revolution of a circle of radius r = 10 voxels along a circle of radius

R = 20 voxels, the hole extends over an angle of c = 35o (approximately). Figure 5(a)

displays the ideal torus from which we cut a piece. Figure 5(b) shows the gap in the

torus, notice again that the boundary of the hole looks rounded, this is only due to our

display and does not correspond to the data. Figure 5(c) shows its reconstruction by joint
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interpolation of vector fields and gray levels (JIVFGL). Figure 5(d) displays the result

obtained minimizing the absolute value of the Laplacian of the distance function, i.e., (2).

Figure 5(e) displays the result obtained minimizing the square of the Laplacian of the

distance function, i.e., (24). Figures 5(f) and 5(g) display the results obtained solving

the AMLE and Laplace equations in 3D. Note that the best results are obtained with the

JIVFGL model and with (24). For a better display of our results, we show in Figure 6 an

orthoslice of each reconstruction through a plane passing by the middle of the torus.

6.2 Experiments with Michelangelo’s David

For this real data, with the purpose of adapting it to our algorithm, the data, originally

given as a triangulated surface, was converted to an implicit representation in a regularly

spaced 3D grid. The result is visualized again as a triangulated surface. Figure 7 shows a

rendering of a scanned version of Michelangelo’s David which has several holes.

Figures 8(a) and 8(b) show some particular holes with a bounding box isolating them.

Figures 8(c) and 8(d) show the triangulated surface (the data) around the hole. The

reconstructed surface by the JIVFGL model are shown in Figures 8(e) and 8(f). The

reconstructed surfaces look natural.

Figure 9(a) shows the hole in David’s left hand. Figures 9(b),(c),(d),(e) and (f) show

the corresponding results obtained minimizing the absolute value of the Laplacian, the

square of the Laplacian, diffusion of curvature, the AMLE, and Laplace equations, respec-

tively. All reconstructions look again natural, but we observe that the result obtained

with curvature diffusion is less smooth. The differences between reconstructions are more

clearly seen in the orthoslices of Figure 10.

Figure 11(a) shows the hole in David’s hair. Figures 11(b),(c),(d),(e) and (f) show the
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(a) An ideal pyramid. (b) Pyramid with a gap.

(c) Reconstruction using

JIVFGL.

(d) Minimizing the integral of

|∆D|.

(e) Minimizing the integral of

|∆D|2.

(f) Curvature diffusion. (g) AMLE. (h) Laplace equation.

Figure 3: Reconstruction of a pyramid with a gap.
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(a) Pyramid and orthoslice 10 of

z axis.

(b) Orthoslice of the ideal recon-

struction.

(c) Reconstruction using

JIVFGL.

(d) Minimizing the integral of

|∆D|.

(e) Minimizing the integral of

|∆D|2.

(f) Curvature diffusion. (g) AMLE. (h) Laplace equation.

Figure 4: Orthoslices of the reconstruction of a pyramid with a gap.
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(a) An ideal torus. (b) Torus with a gap. (c) Reconstruction using

JIVFGL.

(d) Minimizing the integral of

|∆D|.

(e) Minimizing the integral of

|∆D|2.

(f) AMLE. (g) Laplace equation.

Figure 5: Reconstruction of a torus with a gap.
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(a) Slice of the ideal torus. (b) The gap of the torus. (c) Reconstruction using

JIVFGL.

(d) Minimizing the integral of

|∆D|.

(e) Minimizing the integral of

|∆D|2.

(f) AMLE. (g) Laplace equation.

Figure 6: Orthoslices of the reconstruction of a torus with a gap.
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Figure 7: Scanned version of Michelangelo’s David (data from the Stanford Michelangelo’s

project)

corresponding results obtained minimizing the absolute value of the Laplacian, the square

of the Laplacian, diffusion of curvature, the AMLE, and Laplace equations, respectively.

Again, the comparison between different reconstructions can be done with the orthoslices

displayed in Figure 12.

7 Conclusions

In this note we have shown how to extend our previous work on variational image inpaint-

ing to fill-in surface holes. The idea, inspired by [21] and [7, 8], is to represent the surface

of interest by means of a function u, as an upper level set [u > 0], and minimize an energy

functional which integrates a power of the mean curvature of the level sets of u. Then we

use a gradient descent method and, thus, we run a system of coupled geometric partial

differential equations that permit to geometrically continue the surface into the hole. We

have also discussed other curvature based hole surface reconstruction models, one of them
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(a) David’s left hand. (b) A detail of its hair.

(c) A zoomed detail of

(a) showing the triangulated

surface with the hole.

(d) A zoomed detail of

(b) showing the triangulated

surface with the hole.

(e) The reconstruction of the

hole in (c).

(f) The reconstruction of the

hole in (d).

Figure 8: Two different parts of David’s surface and their corresponding bounding boxes

Q containing a hole on the surface. The corresponding results obtained using JIVFGL.
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(a) The hole in David’s left

hand.

(b) Minimizing the absolute

value of the Laplacian.

(c) Minimizing the square of the

Laplacian.

(d) Curvature diffusion.

(e) AMLE. (f) Laplace equation.

Figure 9: The hole in David’s left hand and some reconstructions using different methods.

34



(a) Hand surface and coronal or-

thoslice number 35.

(b) Orthoslice of the gap.

(c) Reconstruction using

JIVFGL.

(d) Minimizing the absolute

value of the Laplacian.

(e) Minimizing the square

of the Laplacian.

(f) Curvature diffusion. (g) AMLE. (h) Laplace equation.

Figure 10: Orthoslices of the reconstruction of the hole in David’s left hand.
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(a) The hole in David’s hair. (b) Minimizing the integral of

|∆D|.

(c) Minimizing the integral of

|∆D|2.

(d) Curvature diffusion.

(e) AMLE. (f) Laplace equation.

Figure 11: The hole in David’s hair and some reconstructions using different methods.
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(a) Hair surface and axial or-

thoslice number 59.

(b) Orthoslice of the gap.

(c) Reconstruction using

JIVFGL.

(d) Minimizing the integral of

|∆D|.

(e) Minimizing the integral of

|∆D|2.

(f) Curvature diffusion. (g) AMLE. (h) Laplace equation.

Figure 12: Orthoslices of the reconstruction of the hole in David’s hair.
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based on a variational model which integrates the Laplacian of a distance function, the

other is heuristic and is based on the diffusion of a function which represents the mean

curvature of level sets of an underlying implicit function. In all these cases, we have shown

reconstruction of surface holes both for synthetic and real data.

Finally, we have also shown simpler methods based on the Laplace equation and the

so-called AMLE model which reconstructs a function which is distance-like near the known

part of the surface and whose zero level set can be interpreted as the reconstructed surface.

If our interest is just to find a smooth reconstruction, this approach may be sufficient. If

one wants a reconstruction which is based on minimizing mean curvature, it can just serve

as an initialization stage.
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